Deno Style Guide
⚠️ Note that this is the style guide for internal runtime code in the Deno runtime, and in the Deno standard library. This is not meant as a general style guide for users of Deno.
Copyright Headers
Most modules in the repository should have the following copyright header:
// Copyright 2018-2023 the Deno authors. All rights reserved. MIT license.
If the code originates elsewhere, ensure that the file has the proper copyright headers. We only allow MIT, BSD, and Apache licensed code.
Use underscores, not dashes in filenames.
Example: Use file_server.ts
instead of file-server.ts
.
Add tests for new features.
Each module should contain or be accompanied by tests for its public functionality.
TODO Comments
TODO comments should usually include an issue or the author's github username in parentheses. Example:
// TODO(ry): Add tests.
// TODO(#123): Support Windows.
// FIXME(#349): Sometimes panics.
Meta-programming is discouraged. Including the use of Proxy.
Be explicit, even when it means more code.
There are some situations where it may make sense to use such techniques, but in the vast majority of cases it does not.
Inclusive code
Please follow the guidelines for inclusive code outlined at https://chromium.googlesource.com/chromium/src/+/master/stylemanual/inclusive_code.md.
Rust
Follow Rust conventions and be consistent with existing code.
TypeScript
The TypeScript portion of the code base is the standard library std
.
Use TypeScript instead of JavaScript.
Do not use the filename index.ts
/index.js
.
Deno does not treat "index.js" or "index.ts" in a special way. By using these filenames, it suggests that they can be left out of the module specifier when they cannot. This is confusing.
If a directory of code needs a default entry point, use the filename mod.ts
.
The filename mod.ts
follows Rust's convention, is shorter than index.ts
, and
doesn't come with any preconceived notions about how it might work.
Exported functions: max 2 args, put the rest into an options object.
When designing function interfaces, stick to the following rules.
A function that is part of the public API takes 0-2 required arguments, plus (if necessary) an options object (so max 3 total).
Optional parameters should generally go into the options object.
An optional parameter that's not in an options object might be acceptable if there is only one, and it seems inconceivable that we would add more optional parameters in the future.
The 'options' argument is the only argument that is a regular 'Object'.
Other arguments can be objects, but they must be distinguishable from a 'plain' Object runtime, by having either:
- a distinguishing prototype (e.g.
Array
,Map
,Date
,class MyThing
). - a well-known symbol property (e.g. an iterable with
Symbol.iterator
).
This allows the API to evolve in a backwards compatible way, even when the position of the options object changes.
- a distinguishing prototype (e.g.
// BAD: optional parameters not part of options object. (#2)
export function resolve(
hostname: string,
family?: "ipv4" | "ipv6",
timeout?: number,
): IPAddress[] {}
// GOOD.
export interface ResolveOptions {
family?: "ipv4" | "ipv6";
timeout?: number;
}
export function resolve(
hostname: string,
options: ResolveOptions = {},
): IPAddress[] {}
export interface Environment {
[key: string]: string;
}
// BAD: `env` could be a regular Object and is therefore indistinguishable
// from an options object. (#3)
export function runShellWithEnv(cmdline: string, env: Environment): string {}
// GOOD.
export interface RunShellOptions {
env: Environment;
}
export function runShellWithEnv(
cmdline: string,
options: RunShellOptions,
): string {}
// BAD: more than 3 arguments (#1), multiple optional parameters (#2).
export function renameSync(
oldname: string,
newname: string,
replaceExisting?: boolean,
followLinks?: boolean,
) {}
// GOOD.
interface RenameOptions {
replaceExisting?: boolean;
followLinks?: boolean;
}
export function renameSync(
oldname: string,
newname: string,
options: RenameOptions = {},
) {}
// BAD: too many arguments. (#1)
export function pwrite(
fd: number,
buffer: ArrayBuffer,
offset: number,
length: number,
position: number,
) {}
// BETTER.
export interface PWrite {
fd: number;
buffer: ArrayBuffer;
offset: number;
length: number;
position: number;
}
export function pwrite(options: PWrite) {}
Export all interfaces that are used as parameters to an exported member
Whenever you are using interfaces that are included in the parameters or return type of an exported member, you should export the interface that is used. Here is an example:
// my_file.ts
export interface Person {
name: string;
age: number;
}
export function createPerson(name: string, age: number): Person {
return { name, age };
}
// mod.ts
export { createPerson } from "./my_file.ts";
export type { Person } from "./my_file.ts";
Minimize dependencies; do not make circular imports.
Although std
has no external dependencies, we must still be careful to keep
internal dependencies simple and manageable. In particular, be careful not to
introduce circular imports.
If a filename starts with an underscore: _foo.ts
, do not link to it.
There may be situations where an internal module is necessary but its API is not meant to be stable or linked to. In this case prefix it with an underscore. By convention, only files in its own directory should import it.
Use JSDoc for exported symbols.
We strive for complete documentation. Every exported symbol ideally should have a documentation line.
If possible, use a single line for the JSDoc. Example:
/** foo does bar. */
export function foo() {
// ...
}
It is important that documentation is easily human-readable, but there is also a need to provide additional styling information to ensure generated documentation is more rich text. Therefore JSDoc should generally follow markdown markup to enrich the text.
While markdown supports HTML tags, it is forbidden in JSDoc blocks.
Code string literals should be braced with the back-tick (`) instead of quotes. For example:
/** Import something from the `deno` module. */
Do not document function arguments unless they are non-obvious of their intent
(though if they are non-obvious intent, the API should be considered anyways).
Therefore @param
should generally not be used. If @param
is used, it should
not include the type
as TypeScript is already strongly-typed.
/**
* Function with non-obvious param.
* @param foo Description of non-obvious parameter.
*/
Vertical spacing should be minimized whenever possible. Therefore, single-line comments should be written as:
/** This is a good single-line JSDoc. */
And not:
/**
* This is a bad single-line JSDoc.
*/
Code examples should utilize markdown format, like so:
/** A straightforward comment and an example:
* ```ts
* import { foo } from "deno";
* foo("bar");
* ```
*/
Code examples should not contain additional comments and must not be indented. It is already inside a comment. If it needs further comments, it is not a good example.
Resolve linting problems using directives
Currently, the building process uses dlint
to validate linting problems in the
code. If the task requires code that is non-conformant to linter use
deno-lint-ignore <code>
directive to suppress the warning.
// deno-lint-ignore no-explicit-any
let x: any;
This ensures the continuous integration process doesn't fail due to linting problems, but it should be used scarcely.
Each module should come with a test module.
Every module with public functionality foo.ts
should come with a test module
foo_test.ts
. A test for a std
module should go in std/tests
due to their
different contexts; otherwise, it should just be a sibling to the tested module.
Unit Tests should be explicit.
For a better understanding of the tests, function should be correctly named as it's prompted throughout the test command. Like:
test myTestFunction ... ok
Example of test:
import { assertEquals } from "https://deno.land/std@0.202.0/assert/mod.ts";
import { foo } from "./mod.ts";
Deno.test("myTestFunction", function () {
assertEquals(foo(), { bar: "bar" });
});
Top-level functions should not use arrow syntax.
Top-level functions should use the function
keyword. Arrow syntax should be
limited to closures.
Bad:
export const foo = (): string => {
return "bar";
};
Good:
export function foo(): string {
return "bar";
}
std
Do not depend on external code.
https://deno.land/std/
is intended to be baseline functionality that all Deno
programs can rely on. We want to guarantee to users that this code does not
include potentially unreviewed third-party code.
Document and maintain browser compatibility.
If a module is browser-compatible, include the following in the JSDoc at the top of the module:
// This module is browser-compatible.
Maintain browser compatibility for such a module by either not using the global
Deno
namespace or feature-testing for it. Make sure any new dependencies are
also browser compatible.
Prefer #
over private
We prefer the private fields (#
) syntax over private
keyword of TypeScript
in the standard modules codebase. The private fields make the properties and
methods private even at runtime. On the other hand, private
keyword of
TypeScript guarantee it private only at compile time and the fields are publicly
accessible at runtime.
Good:
class MyClass {
#foo = 1;
#bar() {}
}
Bad:
class MyClass {
private foo = 1;
private bar() {}
}
Naming convention
Use camelCase
for functions, methods, fields, and local variables. Use
PascalCase
for classes, types, interfaces, and enums. Use UPPER_SNAKE_CASE
for static top-level items, such as string
, number
, bigint
, boolean
,
RegExp
, arrays of static items, records of static keys and values, etc.
Good:
function generateKey() {}
let currentValue = 0;
class KeyObject {}
type SharedKey = {};
enum KeyType {
PublicKey,
PrivateKey,
}
const KEY_VERSION = "1.0.0";
const KEY_MAX_LENGTH = 4294967295;
const KEY_PATTERN = /^[0-9a-f]+$/;
Bad:
function generate_key() {}
let current_value = 0;
function GenerateKey() {}
class keyObject {}
type sharedKey = {};
enum keyType {
publicKey,
privateKey,
}
const key_version = "1.0.0";
const key_maxLength = 4294967295;
const KeyPattern = /^[0-9a-f]+$/;
When the names are in camelCase
or PascalCase
, always follow the rules of
them even when the parts of them are acronyms.
Note: Web APIs use uppercase acronyms (JSON
, URL
, URL.createObjectURL()
etc.). Deno Standard Library does not follow this convention.
Good:
class HttpObject {
}
Bad:
class HTTPObject {
}
Good:
function convertUrl(url: URL) {
return url.href;
}
Bad:
function convertURL(url: URL) {
return url.href;
}